Subalgebra A12+A21A16
40 out of 61
Computations done by the calculator project.

Subalgebra type: A12+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A12 .
Centralizer: A21 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A12+A21
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, -1, 0, 0), (2, -2, -1, 0, -4, -2)
Contained up to conjugation as a direct summand of: A12+2A21 .

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 1, 1, 1, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, A21: (0, 1, 2, 1, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: g21, g6, g3+g13
Positive simple generators: g21, g6, g13+g3
Cartan symmetric matrix: (210120001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (210120004)
Decomposition of ambient Lie algebra: 4V2ω32Vω2+ω32Vω1+ω3Vω1+ω24V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω32ψ1+12ψ2V2ω34ψ1+10ψ2V4ψ1+10ψ2Vω1+ω3+2ψ1+2ψ22V2ω3Vω1+ω22V0Vω2+ω32ψ12ψ2V2ω3+4ψ110ψ2V4ψ110ψ2Vω2+ω3+2ψ112ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra.g2+g4h62h51/2h3h2+h1h4+h2g4+g2g19g12g16g17g14g8g3g13g9
weight0000ω1+ω2ω1+ω3ω1+ω3ω2+ω3ω2+ω32ω32ω32ω32ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ110ψ2004ψ1+10ψ2ω1+ω2ω1+ω3+2ψ1+2ψ2ω1+ω32ψ1+12ψ2ω2+ω3+2ψ112ψ2ω2+ω32ψ12ψ22ω3+4ψ110ψ22ω32ω32ω34ψ1+10ψ2
Isotypic module decomposition over primal subalgebra (total 12 isotypic components).
Isotypical components + highest weightV4ψ110ψ2 → (0, 0, 0, 4, -10)V0 → (0, 0, 0, 0, 0)V4ψ1+10ψ2 → (0, 0, 0, -4, 10)Vω1+ω2 → (1, 1, 0, 0, 0)Vω1+ω3+2ψ1+2ψ2 → (1, 0, 1, 2, 2)Vω1+ω32ψ1+12ψ2 → (1, 0, 1, -2, 12)Vω2+ω3+2ψ112ψ2 → (0, 1, 1, 2, -12)Vω2+ω32ψ12ψ2 → (0, 1, 1, -2, -2)V2ω3+4ψ110ψ2 → (0, 0, 2, 4, -10)V2ω3 → (0, 0, 2, 0, 0)V2ω34ψ1+10ψ2 → (0, 0, 2, -4, 10)
Module label W1W2W3W4W5W6W7W8W9W10W11W12
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g2+g4
Cartan of centralizer component.
h62h51/2h3h2+h1
h4+h2
g4+g2
Semisimple subalgebra component.
g19
g6
g21
h6
h6h5h4h3h2h1
g21
2g6
g19
g12
g15
g7
g10
g18
g14
g16
g11
g1
g5
g20
g17
g17
g20
g5
g1
g11
g16
g14
g18
g10
g7
g15
g12
g8
g2+g4
2g9
Semisimple subalgebra component.
g13+g3
h42h3h2
2g32g13
g3
h3
2g3
g9
g4g2
2g8
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ110ψ204ψ1+10ψ2ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω3+2ψ1+2ψ2
ω1+ω2+ω3+2ψ1+2ψ2
ω1ω3+2ψ1+2ψ2
ω2+ω3+2ψ1+2ψ2
ω1+ω2ω3+2ψ1+2ψ2
ω2ω3+2ψ1+2ψ2
ω1+ω32ψ1+12ψ2
ω1+ω2+ω32ψ1+12ψ2
ω1ω32ψ1+12ψ2
ω2+ω32ψ1+12ψ2
ω1+ω2ω32ψ1+12ψ2
ω2ω32ψ1+12ψ2
ω2+ω3+2ψ112ψ2
ω1ω2+ω3+2ψ112ψ2
ω2ω3+2ψ112ψ2
ω1+ω3+2ψ112ψ2
ω1ω2ω3+2ψ112ψ2
ω1ω3+2ψ112ψ2
ω2+ω32ψ12ψ2
ω1ω2+ω32ψ12ψ2
ω2ω32ψ12ψ2
ω1+ω32ψ12ψ2
ω1ω2ω32ψ12ψ2
ω1ω32ψ12ψ2
2ω3+4ψ110ψ2
4ψ110ψ2
2ω3+4ψ110ψ2
2ω3
0
2ω3
2ω3
0
2ω3
2ω34ψ1+10ψ2
4ψ1+10ψ2
2ω34ψ1+10ψ2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ110ψ2M0M4ψ1+10ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω3+2ψ1+2ψ2Mω1+ω2+ω3+2ψ1+2ψ2Mω2+ω3+2ψ1+2ψ2Mω1ω3+2ψ1+2ψ2Mω1+ω2ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+ω32ψ1+12ψ2Mω1+ω2+ω32ψ1+12ψ2Mω2+ω32ψ1+12ψ2Mω1ω32ψ1+12ψ2Mω1+ω2ω32ψ1+12ψ2Mω2ω32ψ1+12ψ2Mω2+ω3+2ψ112ψ2Mω1ω2+ω3+2ψ112ψ2Mω1+ω3+2ψ112ψ2Mω2ω3+2ψ112ψ2Mω1ω2ω3+2ψ112ψ2Mω1ω3+2ψ112ψ2Mω2+ω32ψ12ψ2Mω1ω2+ω32ψ12ψ2Mω1+ω32ψ12ψ2Mω2ω32ψ12ψ2Mω1ω2ω32ψ12ψ2Mω1ω32ψ12ψ2M2ω3+4ψ110ψ2M4ψ110ψ2M2ω3+4ψ110ψ2M2ω3M0M2ω3M2ω3M0M2ω3M2ω34ψ1+10ψ2M4ψ1+10ψ2M2ω34ψ1+10ψ2
Isotypic characterM4ψ110ψ22M0M4ψ1+10ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω3+2ψ1+2ψ2Mω1+ω2+ω3+2ψ1+2ψ2Mω2+ω3+2ψ1+2ψ2Mω1ω3+2ψ1+2ψ2Mω1+ω2ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+ω32ψ1+12ψ2Mω1+ω2+ω32ψ1+12ψ2Mω2+ω32ψ1+12ψ2Mω1ω32ψ1+12ψ2Mω1+ω2ω32ψ1+12ψ2Mω2ω32ψ1+12ψ2Mω2+ω3+2ψ112ψ2Mω1ω2+ω3+2ψ112ψ2Mω1+ω3+2ψ112ψ2Mω2ω3+2ψ112ψ2Mω1ω2ω3+2ψ112ψ2Mω1ω3+2ψ112ψ2Mω2+ω32ψ12ψ2Mω1ω2+ω32ψ12ψ2Mω1+ω32ψ12ψ2Mω2ω32ψ12ψ2Mω1ω2ω32ψ12ψ2Mω1ω32ψ12ψ2M2ω3+4ψ110ψ2M4ψ110ψ2M2ω3+4ψ110ψ2M2ω3M0M2ω3M2ω3M0M2ω3M2ω34ψ1+10ψ2M4ψ1+10ψ2M2ω34ψ1+10ψ2

Semisimple subalgebra: W_{4}+W_{10}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (266.67, 333.33)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (233.33, 366.67)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 206642 arithmetic operations while solving the Serre relations polynomial system.